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ABSTRACT
Predictions of people’s behaviour increasingly drive inter-
actions with a new generation of IoT services designed to
support everyday life in the home, from shopping to heating.
Based on the premise that such automation is difficult due
to the contingent nature of people’s practices, in this work
we explore the nature of these contingencies in depth. We
have designed and conducted a technology probe that made
use of simple linear predictions as a provocation, and invited
people to track the life of their household essentials over a
two-month period. Through a mixed-method approach we
demonstrate the challenges of simple predictions, and in turn
identify eight categories of contingencies that influenced pre-
diction accuracy. We discuss strategies for how designers of
future predictive IoT systems may take the contingencies
into account by removing, hiding, revealing, managing, or
exploiting the system uncertainty at the core of the issue.

CCS CONCEPTS
• Human-centered computing → Field studies; Empir-
ical studies in ubiquitous and mobile computing; Empirical
studies in HCI .
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domestic grocery shopping, IoT, proactive technology, au-
tomation, autonomous agents, technology probe

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CHI 2019, May 4–9, 2019, Glasgow, Scotland UK
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5970-2/19/05. . . $15.00
https://doi.org/10.1145/3290605.3300869

ACM Reference Format:
Carolina Fuentes,Martin Porcheron, Joel E. Fischer, Enrico Costanza,
Obaid Malik, and Sarvapali D. Ramchurn. 2019. Tracking the Con-
sumption of Home Essentials. In CHI Conference on Human Fac-
tors in Computing Systems Proceedings (CHI 2019), May 4–9, 2019,
Glasgow, Scotland UK. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3290605.3300869

1 INTRODUCTION
Research in HCI is beginning to examine how people experi-
ence emerging ‘proactive’ Internet of Things (IoT) technolo-
gies in their everyday lives [20], for example to automate
elements of food shopping [57]. Current approaches for man-
aging grocery shopping vary, relying on various degrees of
automation and technology, including buttons for instant
re-ordering (e.g. Amazon Dash), and ‘meal kit’ subscription
services. Yet these do not account for existing products in the
home, and ‘smart’ fridges that attempt to monitor groceries
as yet do not feature automated re-ordering. Prospectively,
future technologies will combine elements of all of these
approaches but must address the challenge of predicting
shopping needs for such a system to be adopted at scale.
For these IoT systems to deliver the expected economic

and societal benefits [37], they face the challenge to fit into
the contingent practices that shape the lived experience of
household shopping and consumption [30]. In this work, our
primary aim is to investigate these contingencies to develop
an understanding of household product consumption that
can be used to inform the design of IoT-based services that
leverage consumption data. For example, ‘automated replen-
ishment’ services that make use of IoT-enabled prediction
of essential product use in the home to trigger automated
repurchasing and delivery. Managing essential products in
the home is an opportunity for HCI to address numerous
challenges, including reducing food waste [19, 50] and acces-
sibility challenges for less-abled people [17]. However, while
approaches to predict household consumption are emerg-
ing [56], an understanding of the contingent nature of actual
consumption that shapes the uncertainty that designers of
predictive systems should take into account is lacking.

To address this gap, we have conducted a two-month long
technology probe deployment in ten UK households. Our

https://doi.org/10.1145/3290605.3300869
https://doi.org/10.1145/3290605.3300869
https://doi.org/10.1145/3290605.3300869


quantitative findings demonstrate shortcomings of simple
predictions of consumption; and our qualitative analysis
of participant feedback gathered throughout the study and
semi-structured interviews with participant households re-
veals eight categories of contingencies that participants used
to explain why predictions were wrong. In turn, we discuss
strategies that designers can adopt to address the uncertainty
effected by the contingent nature of product consumption.

2 RELATEDWORK
We now situate our work with literature on the Internet of
Things and domestic grocery and household shopping.

The Proactive Internet of Things (IoT)
The IoT paradigm promises an era in which everyday ob-
jects are interconnected with each other and the Internet,
enabling technologies to “disappear from the consciousness
of the user” [24]. The economic scale and impact of IoT is set
to touch nearly every industry ranging from homes [31, 44],
retail [46], health [32, 35], smart cities [3], and as with our fo-
cus, automated shopping and delivery [9]. Yet, the notion that
our lives will be filled with devices generating and collecting
data engenders new challenges in how future systems could
adequately act upon this data to be of value to users [40]. The
idea is that future systems will be equipped to autonomously,
or rather, proactively, deal with this potential ‘deluge’ of data,
enabling them to act on behalf of their users [20].
The Proactive IoT extends the idea of autonomous sys-

tems. By including sufficient sensory input, systems will be
able to self-direct and reveal the consequences of automated
decision making, and allow users to delegate consent ap-
propriately [43], such that the users can rely on and trust
the system to perform as expected [8]. While the impor-
tance of understanding how to design an interactive system
for the situated and contingent nature of everyday life is
long understood in HCI [48], work to make sense of how
a proactive system might meet this challenge is relatively
nascent. Recent literature in this vein has drawn on a vari-
ety of traditions, ranging from ethnomethodological inquiry
(e.g. [30]), and in-home breaching experiments (e.g. [57]), to
algorithmic Machine Learning-driven approaches (e.g. [1]).
Regardless of the approach taken, predicting the needs of
end-users is demonstrably an unresolved challenge, even
with existing commercial systems [60], and is complicated by
the multi-person, multi-activity collaborative environments
such technologies are destined for, such as the home [42].

Therefore, to design a proactive system that is capable of
predicting the essential grocery needs of homes, designers
must not only model individual consumers [16], but they
should also allow the system to be shaped by the on-going
contingencies of everyday life.We deploy a technology probe

to track existing product use in the home and conduct fo-
cused contextual interviews with participant households to
examine the contingencies that shape their consumption of
the home essentials.

Domestic grocery shopping
Shopping provides a ripe opportunity for the development of
proactive IoT technologies that can predict and deliver items
to the home prior to depletion [37]. The activity of grocery
shopping has been found to have two distinct tasks: planning
and preparation [51], and fulfilment [6]. Work has explored
the practices of creating shopping lists as memory aids [6],
how such lists might be digitised [25], and how stores might
use customer data to predict future shopping lists, increasing
their revenue [15]. Hyland et al. [30] conducted ethnographic
fieldwork and identified how participants anticipate their
food needs. The authors have found shopping to be both com-
prised of incidental (i.e., opportunistic) and intentional (i.e.,
planful) practices. Data collection methods have included
photo diary studies of participants preparing and consuming
food [28, 57], and wearable cameras to reveal food consump-
tion cycles in the home [39]. IoT technologies, however, hold
the potential to allow such data to be collected automati-
cally [40], using devices such as smart fridges to track how
products in the home are used [9].
Tsubakida et al. [56], made use of food logging and find

that seven days sufficed to coarsly predict an individual’s
eating habits. However, others have shown shopping choice
to shaped by the contingent social and economic factors of
everyday life [41], motivating a closer look at what these
contingencies are in our work.
Research on the use of grocery items in the home has fo-

cused on features such as environmental and financial impact
of food waste [5, 47]. Of the work that considers other bene-
fits, such as convenience to users, Hong et al. [26] proposed
a semi-autonomous system that prompted users to re-order
items that are running low, based on sensors in cupboard
shelves. However their approach stopped short of satisfying
household needs. Verame et al. identified the “challenges
of making agency delegation accountable to meal planning,
persons’ schedules, food-centred values, adaptation and in-
novation, and the social division of labour in which computa-
tional agency will ultimately be embedded” [57, p. 10]. Thus,
they elaborate on Crabtree and Tolmie’s point that “sensing
domestic activity at a local level . . . raises real challenges for
machine learning” [13, p. 1747]. It is this very challenge that
our study seeks to explicate.

In sum, a proactive IoT system that supports grocery shop-
ping must address: how and which data to collect to make
sense of the product life cycle [39], how to compute met-
rics to drive a system that reliably reorders food ‘in time’
while considering human desires for variety [57], how to



deal with the ‘out-of-stock substitution’ problem, but with-
out generating food waste [50]. The gap we address in this
work is to offer an examination of the contingencies that
shape the uncertainty of everyday routine, and how this
could be systematically handled in and through design.

3 TRACKING HOUSEHOLD ESSENTIALS
Following a home deployment approach [54], we now intro-
duce the probe we designed to track household products in
order to “consider food-related behaviours within the social
environments in which they occur” [11]. We frame our de-
ployment as a technology probe [29], in that it is designed to
gather data through technology use in a real-world setting.
Our probe consists of a barcode scanner and a web applica-
tion to gather consumption data and participant feedback
by means of the probe and contextual semi-structured in-
terviews [7]. We chose the barcode scanner as it is familiar
to most UK shoppers from self-checkouts in supermarkets.
Our probe is in line with other home deployments that were
used to understand the socio-technical challenges of how
future IoT systems should be designed to meet the needs of
everyday life [2, 12]. Our work however does not propose
a solution to the ‘tracking problem’—the primary purpose
of our deployment is to capture data about the consumption
of products in the home. Thus, our work should be under-
stood as an exploration of the problem space, supporting
future work that rises to the challenge. Our work focuses
on the contingencies that (potentially) explain variability in
everyday use to support the design of proactive IoT systems
that predict the use of products in the home, for example to
‘replenish’ items before they run out.

Figure 1: Screenshots showing: (a) the ‘Essentials’ view, and
(b) the ‘Calendar’ view with predicted consumption dates.

Home Essentials probe design
To develop an understanding of how different types of items
are consumed in each household, we designed a probe allow-
ing households to track the use of ‘essential’ consumables,

from when they were brought home to when they were con-
sumed or thrown away—this we deemed the ‘cycle’ of the
product for our purposes. In order to practically constrain
the scope of the study, we asked households to identify 10–20
items they considered ‘essential’ (these could be food and
also other consumable products such as beauty or cleaning
products). The probe deployed in each household consisted
of a hand-held barcode scanner, connected via Bluetooth to
an iPad with an external keyboard for easy data entry, run-
ning the Home Essentials web app (see Figure 1); the probe
had the following key features.

Scanning. Participants use a standard EAN barcode scanner
to ‘scan in’ items when they enter the home, and ‘scan out’
items once they were consumed or disposed of. A sheet with
custom barcodes was provided for items that do not have a
barcode. Each time a barcode is scanned the item is looked
up from an open API [49], and our own product database. In
case the product is not found the user is prompted to enter
product name, brand, and size/weight and the data is added
to our database.

Cycle prediction. The probe tracks each item’s cycle to
compute an average (mean) consumption time for each prod-
uct, updated after each cycle. Average consumption was
calculated when an item was ‘scanned out’; we ensured it
was paired with the oldest ‘in stock’ item to ensure that ‘top
up’ shops completed prior to an item running out did not
erroneously skew average consumption times. The purpose
of using a mean-based algorithm is not to propose this as
a solution, but to prompt participant feedback and to sup-
port interviews. We projected that certain items may be
purchased more regularly than others, thus a mean-based
prediction may be sufficient. However, other products might
fall afoul of everyday variances in routine. Explicating the
contingencies that establish the irregularity of purchasing
and consuming products is the key objective for us.

User feedback. In the case of our predictions being ‘in-
correct’ (i.e. more than one day between the predicted and
actual consumption date), the probe prompts the user for
an explanation by generating a request for feedback via the
‘Inbox’ tab of the web app. This feedback provides a critical
data source in this work to understand the contingencies
that make the computation of predictions of items in the
home a challenge.

Grouping items. We grouped equivalent products, or ‘sub-
stitutes’ for each household, drawing on the idea of how
in online grocery shopping, items which are out-of-stock
are substituted for items which are deemed to be equivalent
by a system. We used a heuristic to make decisions such
as “is whole milk the same as semi-skimmed milk for this
household?”—any future system that delivers predictions



based on consumption may have to address this too. The
difficulty in deciding whether and how similar products are
equivalent is exacerbated by people’s propensity to buy items
from different shops, in different quantities, varieties, brands,
and flavours. As we were not aware of any criteria that define
equivalency we opted to take a relatively simple approach
and only grouped items that had a different brand, but the
same flavour/variety and the same amount, for example we
would not group whole milk with skimmed milk, nor 4pts
of whole milk with 2pts of whole milk. We would use this
approach to provoke critical reflection from participants,
allowing us to gain insight into how different households
themselves made sense of equivalency when items were or
were not grouped.

Predictive shopping list. We also designed a proactive
‘shopping list’ that brought together items that had been con-
sumed and that would be consumed within the next seven
days. In the latter case, this list was generated using pre-
dictions based on previous average time-to-consume of the
tracked essentials. The list was optimised for mobile screens
and it allowed households to add additional items manually,
so that it could be used as an actual shopping list on the go.
The purpose of introducing the shopping list feature would
be to encourage participants to engage with the predictive
elements to support the later interviews.

Implementation
We built a tablet-optimised web application. The website,
shown in Figure 1, consisted of a tabbed interface covering
the four main features: two tabs to scan in and scan out items
respectively, an Essentials tab that listed items currently in
stock, and those which were previously in stock, a Calendar
view that showed when items were expected to run out, and
an Inbox tab for collecting feedback when predictions were
incorrect. The shopping list was accessible both from the
main probe as a separate webpage, and through a special link
that was accessible from mobile devices to allow participants
to use the list while shopping.

4 THE STUDY
After our two-month study was approved by the univer-
sity’s Ethics Committee we hired a market research agency
to recruit ten households from the local community. We in-
structed the agency to recruit a broad range of participants
in the wider Nottingham area, who ‘live and eat together’,
mostly families, couples, but also singles. We had to exclude
shared homes as our probe was not designed to cope with
multiple households in the same home.

Participants
Our participants’ demographics are shown in table 1. H07
was withdrawn after the interim interview due to insuffi-
cient engagement in the study, and thus was excluded from
analysis.

Table 1: Participant information
H. Adults (gender: age) Children (age)
01 1 (f:50s) 0
02 2 (m:40s; f:30s) 2 (5—12,5—12)
03 2 (m,f: 40s) 3 (18—24,13—17,5—12)
04 2 (m,f: 20s) 0
05 1 (f: 30s) 1 (5—12)
06 1 (f: 40s) 1 (5—12)
08 2 (m,f: 30s) 2 (5—12,2—4)
09 2 (m,f: 30s) 1 (2—4)
10 1 (f: 40s) 2 (13—17,5—12)

Procedure
Prior to the commencement of the study, each household was
asked to take part in a study that consisted of three interviews
plus the use of our probe to track essential products in the
home over two months. Each household was reimbursed in
cash with £50 plus up to a further £50 based upon their use
of the probe (each item scanned in or scanned out added
£0.10 to the reimbursement total).
During our first visit to each home, we collected demo-

graphic information; asked questions about existing shop-
ping routines, and which items members considered ‘essen-
tial’ in the home. Following this, we provided an interactive
demonstration of the probe. Periodically we reminded par-
ticipants via SMS or WhatsApp to reply to questions sent to
them in the ‘Inbox’ tab of our probe. We conducted an ‘in-
terim’ interview after one month, focusing on the use of the
probe within participants’ routines, and to elicit initial feed-
back on the ideas of an autonomous system that predicted
the cycle of essential items. At this stage we also introduced
the ‘shopping list’ feature to participants. The final interview
focused on the predictive elements of the probe including the
shopping list, and factors that might have led to their routine
varying through the deployment period. In this, we elicited
household perceptions of which types of items they consider
to be equivalent, and which they did not. Following the final
interview, each household was debriefed and reimbursed.

Analysis
We employed a mixed methods approach [14] to combine
our statistical analysis of data collected through our probe
with insights from contextual interviews and feedback about
predictions. We extracted event logs as well as computed pre-
dictions from our data, which to analyse participant engage-
ment and prediction accuracy. We transcribed interviews
and performed a thematic analysis, with three researchers
working together. As discussed, our probe solicited users



for feedback when a prediction was wrong. The 538 feed-
back statements collected through the ‘Inbox’ tab were itera-
tively categorised through affinity diagramming by two of
the authors [34], with an experienced third author critically
checking and advising on progress periodically. We strictly
followed our participant’s own categorisations of whether
using the item up early or late can be best explained through,
for example, ‘routine change’ or ‘normal use’, testing each
statement against our broad categories to determine best fit.

5 FINDINGS
We briefly present the findings on how each household de-
scribed their shopping practices, and the use of the Home Es-
sentials probe throughout the deployment. We then examine
the contingent nature of household consumption, including
the (lacking) accuracy of simple predictions, and the contin-
gencies that householders used to explain why predictions
were wrong. Finally, we examine the ‘equivalency problem’.

Existing shopping practices
Across our participant households, the female adult was re-
sponsible for shopping, although three homes mentioned
another household member’s help. The variety of types of
shops included supermarkets (all), cash-and-carries (H03,
H08), convenience stores (H04, H10), specialist stores (H01),
and markets and independent traders (H09). All households
had ‘club cards’ for various saving schemes. Eight went shop-
ping multiple times per week, especially to ‘top up’ when
items were running low. Trips would frequently take place
after work/dropping children off at school (H02, H03, H04).
Three households said they had a weekly routine (H05, H06,
H08). Most households used lists, except H01 and H10; only
H08 made use of a digital list on their phone (others used
paper lists).
Regarding routines, there was a range of patterns: H03

check their stock to produce a list,H02,H05, andH08 maintain
a list in a shared space (e.g. on the fridge), whereas H04 and
H06 plan a week’s meals before shopping; H09 and H10 use
“mental lists” . Some would simply buy items when they ran
out (H01, H02, H04, H10), some stated they overstocked on
certain items to ensure they didn’t run out (H02, H03, H08,
H09, H10), and some said they frequently checked whether
items were needed before shopping (H03, H05, H06, H08).

Engagement with the Home Essentials probe
We logged all interactions with the probe to gauge engage-
ment. As well as providing an insight into the use of the
probe, it also served as a point of reference for the later
interviews. The probe was least used in H06 (every 1.56
days) and most in H02 (0.03 days) and H08 (0.29 days). A
linear regression confirmed that larger households used
the probe more frequently, the number of occupants and

the mean time between interactions correlated significantly
(F (1, 7) = 12.51,p = 0.010) with an R2 of 0.641. A paired-
samples t-test was performed to check whether engagement
(in terms of number of scans) changed from the first half
of the deployment to the second half. There was no sig-
nificant difference in the mean number of scans for the
first half (M = 172.89, SD = 78.89) and the second half
(M = 144.11, SD = 61.48); t(8) = 1.243,p > 0.2.

We asked participants to input 10–20 items into the probe,
but because products of different varieties and brands have
unique barcodes, we recorded a total of 630 products across
all households, from 1549 scan ins and 1304 scan outs. Ta-
ble 2 lists number of scan events and items (in total, with at
least one cycle, and with at least two cycles) per household.
The number of items is derived after grouping based on the
heuristic stated above. We now consider key elements of
the probe: whether and how participants made use of the
predictions and the predictive shopping list.

Table 2: Total tracked items and scan events
H01 H02 H03 H04 H05 H06 H08 H09 H10

∑
Items 31 88 64 33 43 87 57 133 94 630
Items (1+ cycles) 26 80 51 28 38 74 52 128 76 553
Items (2+ cycles) 10 38 29 21 15 14 29 30 28 214

Scan Ins 97 301 212 175 101 118 185 198 162 1549
Scan Outs 60 249 181 157 82 92 162 188 133 1304

Did participants use predictions? Predictions were pre-
sented to users in the ‘Essentials’ view that listed ‘in stock’
and ‘out of stock’ items, and in the ‘Calendar’ view that
listed dates at which items were predicted to be consumed
by (Figure 1). As expected, participants concurred that the
probe would be too onerous to track the stock level of items
in the home to be viable alternative to their existing routine.
This routine often included ‘looking and checking’ which
items were needed buying prior to shopping trip, echoing
others who have studied shopping practices (i.e. [30]). Some
participants did make use of the stock level in the probe as
an aide-mémoire: “it reminds me of what I might have in that
I might’ve forgotten about” (H03). Yet, purchasing decisions
were handled with business as usual without the probe pre-
dictions: “it doesn’t replace actually walking around the store
and having ideas when you have special offers or something
new in just for a few weeks” (H10).
When asked about the accuracy of predictions, partici-

pants felt that the probe worked better for most regularly
used items, for fresh fruits and vegetables (H05, H08), for
items used quickly or consumed “on the go” (H04), or for
items bought at the same place (H08). On the other hand,
participants reported that predictions didn’t work well for
items that take longer to consume or for items that were
not used frequently i.e., lentils in large packages (H03), for
toiletries, for frozen items, and for tinned food. Also, routine



changes have an impact on the accuracy, e.g. increased con-
sumption due to being at home during holidays (H10). We
analyse the accuracy of predictions after reflecting on the
predictive shopping list.

Was the predictive shopping list used? During the in-
terim interview, we introduced the predictive shopping list
generated from participants’ prior use of the probe. All house-
holds made use of the feature at least once, although there
was consensus amongst the participants that the use was of
limited value to them compared to their preexisting routines
(of no list, paper list, or a note stored on a mobile phone;
as discussed above). In one instance the predictive list was
used as a ‘backstop’ to identify forgotten items; a participant
“didn’t bring a list that time and . . . thought: oh, what else do I
need?” (H05). H02 also remarked how they used it prior to a
shop to check for any items they had forgotten from their
paper list. On the whole, however, the shopping list was
mostly not used.

Understanding household consumption
We now turn to examine the contingent nature of household
consumption. First, we demonstrate shortcomings of simple
predictions. Second, we unpack participants’ statements why
predictions were wrong to reveal the contingencies driving
consumption. Prediction accuracy was computed in terms of
prediction error for the 214 items that had at least two ‘cycles’,
i.e. scanned in and out two or more times. Following the first
scan out of an item, the predicted next time-to-consume was
equal to the time-to-consume of the item. On each successive
scan out, the prediction was updated based on the mean of
all prior time-to-consumes. The prediction error is calculated
as the measure of how many days early or late the scan out
is compared to when it was predicted to occur (using the
mean of all time-to-consumes up to, but not including the
scan out).

How accurate were the predictions? We first consider
how the probe fared across households. The average error
across all products was 4.43 days, but this varied considerably
between households. Figure 2 shows box plots of the distri-
bution of accuracy errors by household (whiskers denoting
interquartile range). H01, a single occupant, had the greatest
mean error of 11.29 days (σ = 6.75,N = 34). When asked
about the disadvantages of using the probe, she remarked
that she doesn’t do “. . . a regular shop and it’s just me, then
I just do as and when” (H01). This suggests a limitation of a
future system—that some peoples’ lives provide limited regu-
larity in their shopping and consumption habits—may lead to
less accurate predictions. Conversely, H09 featured a family
and from our small sample of households, was the one who
engaged with the probe the most in terms of number of prod-
ucts, yielding a mean error of 2.23 days (σ = 2.80,N = 60).

This household used a paper list of items scanned into and out
of the probe, marking items off when they were consumed
to ensure data validity. A linear regression also confirmed
participants’ statements that the accuracy was better for
products used up more quickly, for the items that have at
least two cycles in our data (N = 214). A significant regres-
sion equation was found (F (1, 212) = 193,p < 0.01), with an
R2 of 0.48, a strong correlation suggesting 48% of the vari-
ability in the prediction error can be accounted for by the
mean time-to-consume in our data.

H01 H02 H03 H04 H05 H06 H08 H09 H10
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Figure 2: Error (in days) of predictions by household

Does accuracy increasewith product cycles? To answer
the question whether prediction accuracy increases with
more product cycles we ran a simple linear regression, again
on the items that have at least two cycles in our data (N =
214). A significant regression equationwas found (F (1, 212) =
4.92,p = 0.028), with an R2 of 0.02, meaning only 2% of
the variability in the accuracy (i.e. prediction error) can be
accounted for by number of cycles in our data. The error
decreases by 0.2 for each additional product cycle. This re-
sult can be interpreted to mean that even with ‘more data’
(i.e. more product cycles) the prediction accuracy does only
improve marginally over time; thus this result supports our
premise that simplistic computational predictions of this
kind are generally inaccurate.

Why were predictions wrong? To understand the con-
tingencies that contributed to why predictions were wrong
we prompted users to provide feedback when items were
scanned out earlier or later than the predicted time. After
cleaning the data from duplicate comments on grouped items,
we obtained 538 feedback statements, 386 (72%) of these were
related to items scanned out earlier than predicted. The other
152 (28%) of the statements were obtained for items scanned
out later than predicted. We now present the categories that
emerged through affinity diagramming of the statements,



Table 3: Categories (frequencies) of contingencies for why products were scanned out earlier than predicted.

Cat. Subcategory Households Products Example statements

N
or
m
al
us
e

(1
33
) Used in a recipe (43) H02, H03, H04, H06,

H08, H09, H10

bacon, baked beans, bananas, bread, butter, carrots, chicken, jelly,
milk, mushrooms, olives, onions, pastry, potatoes, yogurt

“Made fish pies - used milk for cheese sauce” (milk, H02), “I used to make pie and
also a chicken dinner” (potatoes, H06)

Unsure why (40) H09, H02, H10, H05,
H01, H06

baby wipes, bananas, bread, cereal bar, easy-peelers, eggs, milk,
muesli, tea, tomatoes

“No idea why this was used early” (cereal bar, H05)

Used more (26) H01, H04, H05, H06,
H08, H09, H10

apples, carrots, cheese, coffee, easy-peelers, egg, juice, lettuce,
milk, mushrooms, soft drinks, sugar, tinned tomatoes.

“We have eaten more meals with cheese in” (cheese, H08), “Cooked a bigger than
usual dinner” (carrots, H05)

Batch cooking (13) H04, H05 broccoli, carrots, cheese, onions, passata, sweet peppers, sweet-
corn, tinned tomatoes.

“Batched cooked lunches” (sweet peppers, H04)

Sp
or
ad
ic
ev
en
ts

(1
15
) Guest visiting (32) H02, H03, H04, H05,

H06, H08, H09, H10

cereal bar, sausages, broccoli, cheese, bacon, wraps, cucumber,
yogurt, olives, tomatoes, wipes, juice, milk, easy-peelers, etc.

“Kids had a friends sleepover so had big brekkie” (bread, H03), “Had a week of
staying home with friends visiting so more hot drinks than normal” (sugar, H09)

Snacking (32) H02, H03, H04, H08 apples, bananas, bread, carrots, cucumber, grapes, milk, olives,
pears, sweet chilli, tomatoes, yogurt

“Used for overnight porridge” (yogurt, H06), “All had chopped pear as
snacks” (pears, H02), “Easy snack and used for lunch” (apples, H04)

Cleaning day (16) H02, H03, H05, H08 cif, dryer sheets, kitchen towels, liquid, soap pads, washing up,
wipes

“More mess to clean up with children at home!” (wipes, H08), “Used for cleaning
up builders’ mess” (wipes, H02)

Shared at work (11) H02, H06, H10 cherry tomatoes, coffee, coleslaw, cucumber, milk “I take coffee to work and had used it up there” (coffee, H10), “Took to work and
used for lunch with colleagues” (coleslaw, H06)

Ro
ut
in
e
ch
an
ge (7
0) Away/Holidays (16) H01, H02, H08, H09 baby wipes, bananas, cider, juice, kitchen towels, peanut butter,

soya milk, toilet paper, toilet wipes, yogurt
“They are being eaten by my son too as he is off school.” (yogurt, H08),

Packed lunch (16) H02, H05 apples, bananas, bread, cereal bars, cucumber, grapes, tomatoes,
yogurt

“Lots of packed lunches” (bread, H02)

Irregular work
patterns (10)

H02, H04 bacon, baked beans, apple, bread, bananas, yogurt “Busy days and something quick and easy” (baked beans, H04), “Mum working,
packed lunches early shift pattern sandwiches” (bread, H02)

Seasonal changes
(10)

H02, H04, H09 bread, chicken, cucumber, kitchen, milk, olives, shower gel, tow-
els, water

“Humid weather = thirsty household” (milk, H09), “Hot weather, more salad
eaten” (cucumber, H02)

Pr
ef
er
en
ce (2
3) Enjoyed (5) H01, H02, H04, H09,

H10

milk, muesli, pasta, peanut butter, yogurt “Enjoyed it last time we had the meal and easy to cook” (pasta, H04), “I ate this
in one sitting” (yogurt, H09), “We just like drinking it” (soya milk, H10)

Favourite items (16) H02, H06, H09, H10 cheestrings, juice, ketchup, malties, milk, muesli, pears, sausages,
yogurt

“My son drinks a lot of this so always use early” (juice, H06), “Favourites eaten
at breakfast and tea” (yogurt, H02), “Daughter is addicted” (cheestrings, H09)

Lo
c.

(1
4) Convenient (14) H02, H09 wipes and toilet tissue “This pack kept in downstairs loo which girls use more frequently” (wipes, H02)

with associated products and participants’ comments by sub-
category. While eight categories emerged, we only have
space to show details for the five most frequent.

Table 3 shows the top five categories of contingencies for
products scanned out earlier than predicted. The most cited
reasons for early use really just explain ‘normal use’ (133).
This category captures explanations of ordinary day-to-day
use by our participants. The most frequent subcategories
included references to use in a recipe (43), unsure why (40),
using more than usual (26), and used up in batch cooking
(13). ‘Sporadic events’ was the second-most frequent cate-
gory (115). Although these could be considered day-to-day
too, participants distinguished these as irregular occurrences,
such as guests visiting (32), snacking (32), cleaning day (16),
and sharing at work (11). Comments explaining early use by
‘routine changes’ fell into the third most frequent category
(70), capturing changes to routines that commonly follow a
pattern, including occasional packed lunches (16), irregular
work patterns (10), and seasonal changes (10) being the most
cited reasons. Routine changes are a particular challenge
for systems in multi-occupancy households. For example,
some members may work full time and take a packed lunch
every day, some work part-time or flexible hours and some-
times make packed lunch, and kids sometimes take a packed
lunch or may rely on school meals. 23 statements express-
ing personal ‘preference’ included reference to enjoyment

of items (5) and favourites (16). 14 statements referred to a
convenient ‘location’ contributing to items’ early use. Not
in the table are statements pertaining to the (non-)use of
the probe (17), product freshness (9), and product quality (5).
Overall, consumption increase typically accounts for earlier-
than-predicted use but a few relate to imprecise use of the
probe (17).
Table 4 shows the five most frequent (sub-)categories of

contingencies for products scanned out later than predicted.
The most cited reasons explain a decrease in consumption
by reference to routine change (49). Being away / on holi-
day counted for the most frequent single subcategory (30),
followed by: illness (5) and fasting (5)—one of our families
were observing Ramadan. Statements referencing normal
use came second (48), including: unsure why (17), using
products alongside others (9) or less than normal (8). Peo-
ple also referenced personal preferences (19), such as ‘not
wanting’ items (11), or changing their mind (8). Reasons on
the freshness of products were also cited (17), with people
deciding to freeze products to prolong their lifetime (6), and
people still consuming products after their usual lifetime (6).
People also referred to the location of products to explain
non-consumption (17); inconvenient location contributed
to using the product less (5), and contributed to forgetting
about the product (2). Further categories not captured in the



Table 4: Categories (frequencies) of contingencies for why products were scanned out later than predicted.

Cat. Subcategory Households Products Example statements

Ro
ut
in
e

ch
an
ge

(4
9) Away/Holidays (30) H09, H01, H02, H05,

H08, H10

bread, carrots, cat food, cheese, cider, cucumber, eggs, kitchen
towels, milk, muesli, sugar, tinned tomatoes, toilet tissue, etc.

“Not eaten as normal as been away” (cheese, H05), “Spent two nights away from
home so partner forgot to feed him” (cat food, H09)

Illness (5) H02 milk, pear, yogurt “One child ill three days, less cereal consumed” (milk, H02)

Fasting (5) H03 bread, chipsticks, milk, washing up liquid “Fasting so not as much milk, washing up liquid used” (milk, liquid, H03)

N
or
m
al
us
e

(4
8) Unsure why (17) H02, H04 baby wipes, cheese, cucumber, milk, muesli, pasta, pork sausages,

tea, tomatoes, wraps
“Unsure, feels like normal usage” (milk, H02)

Alongside (9) H02, H09 apples, milk, tomatoes, yogurt “I have ran out of cereal so not as much milk being used” (milk, H09) “Were used
alongside other fruits” (apples, H02)

Used less (8) H04, H05, H03, H03,
H04, H09, H10, H08

apple, bread, chocolate, dog food, easy-peeler, lemons, soap,
sugar

“Not snacking on biscuits as much” (dark chocolate, H04), “Not used in water as
often” (Lemons, H08)

Pr
ef
er
en
ce (1
9) Didn’t want it (11) H04, H09, H10 apple, bread,broccoli, cheese, cider, ham, potatoes in water, wine,

wraps, yogurt
“Didn’t fancy apples so much” (apple, H02), “Not keen on this flavour” (cider,
H10), “Unplanned meal change and wanted something quick and easy” (rice,H04)

Change mind (8) H02, H04, H08, H09 broccoli, eggs, ice cream, juice, milk, peppers, potatoes, rice “Unplanned meal change and wanted something quick and easy” (rice, H04),
“Kids eating other breakfast items instead of cereals” (milk, H02)

Fr
es
hn

es
s

(1
7) Frozen (6) H02, H03, H04, H10 bread, chicken, garlic baguette, pitta bread “Froze the chicken at use by date to preserve and not waste” (chicken, H04),

“Frozen was used when required” (chicken, H03), “I froze them” (pitta bread, H10)

Lasted longer (6) H05 broccoli, onion, potatoes, yogurt “Product was still good to use” (onion, H05), “Had a long use by date and was
fine to eat later than I would normally eat it” (yogurt, H05)

Lo
ca
tio

n (7
) Loc. inconvenient (5) H02, H09 salt & vinegar squares, toilet wipes “Kept in upstairs loo which kids use less often” (wipes, H02), “Hidden at the back

of cupboard” (squares, H09)

Forgotten about (2) H04, H05 apples, sweetcorn “Forgot to take them to work” (apples, H04)

table due to space include statements on sporadic events (7),
the probe (5), and product quality (1).

Overall, the contingencies people bring up—and our cate-
gorisation of them—reveal and systematise the reasons for
why everyday use of household products is variable. The
statements together are testament to the need for variety
when it comes to food, echoing previous findings [57]. The
following set of results sheds more light on this topic, by
examining the aforementioned equivalency problem.

Which products are ‘the same’ as others? There is a mis-
match between howpeople categorise their products in terms
of classes and a barcode-based approach that knows only
individual items (defined by brand, flavour, and size). To re-
cap, we followed a heuristic to group equivalent items for
the participants to enable predictions on equivalent prod-
ucts (e.g. ‘same’ products, but different brand/source), but
we did not go as far as to group classes of product (e.g. milk,
tomatoes, etc.). We interviewed people about our grouping
not only to check our assumptions, but to learn about the
equivalency problem in more detail. Specifically, we picked
out two items from their history and asked whether they saw
them as equivalent. Generally, our heuristic approach was
more conservative than people’s views on equivalency. A
thematic analysis of the transcribed interview data revealed
four overall features individuals use to consider items as
equivalent.
↪→ Product class. People were more lenient in referring

to products as belonging to the same class than our heuris-
tic. Six households’ statements suggest that people often
(but not always) see items as equivalent despite variation
in some of their attributes, including colour, brand, variety-
type, and size. In other words, some vegetables and fruits

are considered equivalent substitutes, as well as some items
that do not differ apart from amount, for example: “I think
grapes should be in a whole sort of grape group. I don’t think
the colour of them should make any difference to what it ac-
tually is . . . if we went to a shop and it was my only shop I
was going into, if they didn’t have red grapes I’d still probably
buy green grapes” (H04). When asked about different kinds
of lettuce, H08 replied: “So they’re, kind of, interchangeable
for me, but maybe not for someone else.” (H08). However, it
seems that any apples are apples for H02: “Yes, those, they are
different, obviously, but I don’t really care which, as long as
we’ve got some apples, but they’re the two I would go for” (pink
lady and braeburn apples, H02). However there is also a clear
preference for just these two kinds of apples at play.
↪→ Product attributes. Three households identified partic-

ular features of products that are relevant for considering
items as equivalent (or not). Apart from the ones mentioned
above, these include (1) purpose of use, e.g. tomatoes for
snacking are different from tomatoes for daily use, and 1pt
of milk can be for sharing at work while 4pts of milk is for
the home; (2) source, e.g. products from the market are dif-
ferent to the same products from the supermarket; (3) use by
date; (4) freshness of products; and (5) packaging, e.g. there
is a difference between items bought from the market and
the supermarket. Products from the supermarket usually
last longer than items from the market: “In Tesco you would
buy your grapes out of a fridge whereas on the market they’re
just sat there. So, to group them as one wouldn’t give a true
reflection in the long run . . . because the market ones . . . need
to be eaten within a day or two . . . I think the ones from the
supermarket are a lot fresher. They’re in a proper container,



. . . from the market you just sort of eat them on the day and
whatever’s left [you] get rid of.” (H09)
↪→ Shop/store. Four households mention that the shop

items are bought from has an impact on whether substitute
products are bought that are seen as equivalent: “. . . it just
depends which shop I’m going to that week. So, I normally shop
at Aldi, but I might go into Tesco if I hear that they’ve got good
offers on and then just pick up a bag of carrots. So, it’s . . . no
difference in the product or anything like that” (H05). As in
H05’s statement, ‘shopping around’ is a common feature of
shopping, which can be influenced by a shop having ‘offers
on’ as in this case, alongside myriad other factors including
location, specific product needs, etc.
↪→ Brand loyalty. A household explained the differences

by references to brand loyalty, such as the perceived quality
of brands. Previous experience of the product quality are a
factor commonly invoked in the perception of item equiv-
alency, which can be moderated by price, offers, discounts,
and budget: “That’s one thing with the capsules, I never buy
their own brand. Because I’ve bought in the past and I don’t like
them, so I always buy a brand that I’ve used and I like.” (H03)
Overall then, our brief foray to shed light on the equiv-

alency problem shows that whether products are the same
is contingent on a range of factors, such as whether peo-
ple judge the items to be of the same product class, which
shop the items were purchased from, and a host of product
attributes, including brand, purpose of use, source, use by
date, freshness, and packaging. Judgements of equivalency
are idiosyncratic and are perhaps better left for households
to decide. This has implications that we discuss in turn.

6 DISCUSSION
The findings of our study provide an understanding of house-
hold product consumption that can be used to inform the
design of IoT-based services that leverage consumption data
(predictions on lifecycles, groupings of items, etc.), for exam-
ple to automatically replenish products. Our findings demon-
strate the challenges of simple linear predictions, although
prediction accuracy is higher for more quickly consumed
products. Our analysis found that prediction errors were
frequent and the finding that only 2% of the variability in
accuracy can be explained by the number of cycles in our
data shows how important it is to consider the contingent
nature of variability. With the most frequent explanations
for prediction errors relating to ‘normal use’ (34%), ‘routine
changes’ (22%), and ‘sporadic events’ (23%), this strongly
suggests that variability—and the contingencies that drive
it—is part of the usual everyday consumption of household
goods. The range of factors that shape perceived product
equivalency lend further weight to this finding. When it
comes to food, the saying ‘variety is the spice of life’ really
does ring true. What our probe has revealed is a spectrum of

contingencies that may not have been apparent in prior work
that has exposed users to predictions on aggregate data from
single sources, such as electricity [2, 21]. While electricity
consumption is (mostly) needs-driven, food consumption,
while just ‘subsistence’ at its most basic, is arguably more
driven by experiential, sensual, and physical desires, which
are personal, varied, intricate, and changeable.

For the designers of predictive systems then, the variability
and contingencies of product consumption are at the root of
uncertainty in the system. Uncertainty about when products
are really used up, uncertainty about preference changes or
sporadic events, uncertainty about when products will be
replenished (restocked), uncertainty about what counts as
a substitute, etc. The question of interest to HCI is, what
can we do by design in the face of this uncertainty? There
are specific solutions, such as displaying system confidence
levels to the user [58], but the aim here is to discuss what can
be done strategically. Uncertainty has been a long-standing
challenge for the design of interactive systems (e.g. [4, 23]),
and thus, we turn to the literature to reflect on suitable design
strategies.

Design strategies for dealing with uncertainty
We adopt Benford et al.’s design strategies for dealing with
uncertainty [4], the only framework we found that brings to-
gether design strategies with a user perspective in this space.
Thus, it provides a perspective that system designers should
be able to inherit to build better systems. These five strate-
gies have been proposed in the context of a location-based
system, but we find them applicable to our work. The five de-
sign strategies include removing, hiding, managing, revealing,
and exploiting uncertainty. We reflect and speculate, using as
example the contingencies identified, on how each applies
to the design of systems that leverage these predictions to
drive services such as automated replenishment of goods.
↪→ Removing uncertainty. One strategy is to try to remove

uncertainty from the user’s perspective by including more
sensors, data sources, and algorithms. For example, weighing
scales could allow for more fine-grained predictions through
continuous sensing [10], and connecting to calendars could
make those ‘routine changes’ available for system reasoning,
for example “school holiday starting next week”, or sensing
“location of products” inside cabinets, fridge or containers
could help with identifying items forgotten about or hidden.
While Machine Learning (ML) solutions could improve the
‘smarts’ of the system, one of the challenges for ML-based
solutions to be viable for idiosyncratic use contexts such as
household consumption is to take into account the contin-
gencies that drive consumption, such as personal preferences
for substitutes, brands, variety etc. It would seem then, that
many problems remain to be solved before fully removing
the system uncertainty by means of ML alone.



↪→ Revealing uncertainty. A further design strategy to deal
with the system uncertainty would be to reveal it to the user.
Design solutions following this strategy would emphasise
the user’s responsibility to act on the uncertainty. Designers
may find inspiration in a related bodies of work on intelligi-
bility and explanations in context-aware systems [33], rec-
ommender systems [52], and explainable AI [45]. The work
shows however that providing explanations does not always
make the system intelligible, and that the nature of the expla-
nations matter [33]. In the context of an auto-replenishment
system for household goods however, surfacing the system
uncertainty of whether an item should be reordered may
help addressing the problem, for example, the system could
ask “school holidays coming up, I checked your travel book-
ing and you won’t be at home next week, do we need to
cancel the order, I’m not sure?”.
↪→Hiding uncertainty.Alternatively, the uncertainty could

be hidden, for example in instructions, or in subtle sugges-
tions, or in declarations of intent. For example, the system
could state “school holidays coming, I’m going to order more
yogurt and fruits”. A prior study of home automation for reli-
gious reasons has shown that peoplewere happy to surrender
control of their routines to the home automation system [59].
However, it is probably unlikely that one could simply ‘in-
struct away’ uncertainty; prior work has shown that instruc-
tions in informal settings such as location-based games have
led to tensions, misunderstandings, mistrust, deliberate dis-
obedience, and thus an overall lack in compliance [38, 53].
Although compliance may of course be different in more
formal, professional, or operational settings, people at home
are first and foremost accountable to the social fabric of the
home, and not to some external agency [55].
↪→ Managing uncertainty. A further design strategy is to

let the user manage the uncertainty, by enabling the user
to review and intervene in system actions; for example, ad-
dressing “Preferences” for favourite items, “I’ve ordered ex-
tra cheestrings for Ana, let me know if you want to change
it”. Such an approach is common in mixed-initiative sys-
tems [27], and more recently in interactive ML [18]. An in-
teractive system is central to this approach; related exemplars
range from online settings that systems take into account
when automatically switching energy tariffs [2], to a booking
system so that an agent can optimise battery charging for
the time-of-use [12]. These works implicitly acknowledge
that bringing the user’s reasoning into the loop is the key
strategy to respond to the contingencies of everyday life.
↪→ Exploiting uncertainty. The idea that uncertainty, or

ambiguity can be exploited in creative ways in design has
been an influential one in HCI [23]. As the focus of design in
HCI has moved from the workplace to less formal environ-
ments, design values have broadened from utility, accuracy

and performance, to include values such as experience, cre-
ativity, and surprise. While the notion of automation in the
home may resonate with a utilitarian perspective, this does
not need to be its exclusive focus. What if, for example, the
system would just suggest new recipes based on available
items? Prior work found participants enjoyed the experience
of receiving unknown items in a vegetable box, motivating
them to experience new flavours, new recipes, or be creative
with their existing repertoire [57]. In a similar way, a ser-
vice providing automated replenishment of household goods
may, to some extent, provide unexpected items, potentially
contributing to joyful experiences of surprise that lead to
creative use.

Reflections on the probe
Our findings on engagement with the probe shows higher
prediction accuracy for those that use the system more regu-
larly; we found it worked better for households with more
than one person, and even better for households with chil-
dren. Regular engagement with a tracking system is im-
portant as it affects the accuracy of the predictions, which
highlights the trade-off between accuracy and cost (e.g., in
terms of time spent). An analysis of engagement over the
2-month period confirms that engagement did not decrease
significantly; however, our findings are limited in that we
employed probe-specific measures such as reminders and
payments-per-scan. Thus, future work to develop viable
tracking solutions is likely to encounter user engagement as
a key challenge. Designers would benefit from knowing their
audience, incentivising regular use, and communicating the
system’s scope and limitations. Our findings also confirmed
that scanning barcodes would be too onerous to track prod-
ucts, suggesting prior efforts to develop alternative ‘sensing’
approaches should continue, such as scanning shopping re-
ceipts [36], cameras placed in bins [50] and the fridge [22];
initiatives could also build upon supermarket loyalty card
datasets (while safeguarding privacy).

7 CONCLUSION
This paper has presented a mixed-methods technology probe
study in ten homes to track the consumption of home es-
sentials. Our findings reveal the underlying contingencies
of everyday life that shape the ‘cycle’ of household goods in
the home. Our analysis has identified eight categories of con-
tingencies participants used frequently to explain why items
were used up earlier or later than predicted by a simple linear
algorithm; these categories were routine changes (e.g. holi-
days), sporadic events (e.g. guests visiting), preferences (e.g.
enjoyment), location (e.g. forgotten about), normal use (e.g.
batch cooking), probe (e.g. forgot to scan), product quality
(e.g. different brand), freshness (e.g. frozen). We also found



whether products are seen as equivalent to others is con-
tingent a range of factors including product class, where it
was bought, and a host of product attributes. A take-away is
that these contingencies drive the variability that is part and
parcel of everyday product use and thus need considering
in design. We discussed the implications of the fundamental
uncertainty these contingencies create for systems aiming to
predict people’s consumption. We suggest and outline five
strategies including removing, hiding, revealing, managing,
and exploiting uncertainty that designers can adopt to de-
velop proactive IoT services for the home, such as automatic
replenishment of groceries.
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