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ABSTRACT
Building effective voice interfaces for the instruction of service
robots in specialised environments is difficult due to the local
knowledge of workers, such as specific terminology for objects
and space, leading to limited data to train language models (known
as ‘low-resource’ domains) and challenges in language grounding.
We present a language grounding study in which we a) elicit spo-
ken natural language of context experts in situ through a Wizard
of Oz study and compile a dataset, b) qualitatively examine lin-
guistic properties of the resulting instructions to reveal referential
categories and parameters employed to construct instructions in
context. We discuss how our language grounding protocol may be
applied to bootstrap a language model in its targeted use context.
Our work contributes a linguistic understanding of robot instruc-
tions that can be applied by designers and researchers to develop
spoken language understanding for human-robot interactions in
specialised, low-resource environments.
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•Computer systems organization→Robotic control; •Human-
centered computing→ Natural language interfaces; User stud-
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1 INTRODUCTION
Enabling humans to use natural language to interact with robots
holds many promises, including empowering people with little or
no training in complex control interfaces or programming to make
use of robots. As robots become more capable to support humans
in environments including factories, homes, workplaces and public
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spaces [28, 59], it may be important to provide simple and intuitive
ways to interact with and control them, including in a way that can
be understood by other humans in the setting [26].

Although human-human dialogue is shown to have parallels
with human-machine dialogue, fundamental differences exist that
warrant those building such machines to pay close attention to the
design of these interactional technologies [47]. One of the core chal-
lenges to enable natural language interaction is posed by the need
for language grounding [19, 56]. Language grounding in robotics is
needed to map words to aspects of the physical world and physical
actions [27]. To enable a robot to carry out an apparently simple
instruction such as “put the yellow block into the box on your left”
requires natural language and image processing, object detection
and intent matching (including physical reference resolution) to
ground the semantic representations (e.g., ‘yellow block’) to the per-
cept of the physical object. Technically speaking, grounding relies
either on lexical approaches that formalise the relationship between
semantic and physical representations or learning language models
from large datasets [56].

In the real world, the language used to describe environments
and the objects in them is rich and varied, making it difficult to rely
on existing generalist language models. Considering the potential
instruction given by a factory worker to ‘clean next to the rig’; the
token ‘rig’ may present a previously unseen token for a generalist
language model. Thus, these kinds of specialised environments can
be characterised as ‘low-resource’ from a modelling perspective
as there is limited data available to train the models [33]. In this
article, we address part of the challenge of language grounding for
specialised low-resource environments, such as factories, where
potential operators possess local knowledge (e.g., about what the
objects in the space are called); and this local knowledge shapes the
specific terminology operators may use to instruct a robot. As tasks
and the environment become more complex, changing one’s ter-
minology in order to maintain successful communication with the
robots is cumbersome and runs against basic human-centred design
principles [7]. Particularly for specialised working environments
like laboratories, production, or industrial plants [52], asking work-
ers to alter their behaviour and learn new “rules of engagement”
incurs various costs for operators, such as those of time, where
it may involve retraining and alteration of established, reasoned
working practices. In addition, the results of “misunderstandings”
between the robots and the human workers can have much more
direct consequences here in terms of worker safety, production
timelines, legislation, and industry hygiene standards guidelines
(e.g. [4]).
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We present an elicitation study of natural language instructions
in specialised environments through a robotic vacuum cleaner
(‘robovac’) case study (see below) to inform future language ground-
ing models. We conducted a Wizard of Oz (WOz) elicitation study
to collect a dataset of people’s spoken instructions of robovac in
a food chemistry laboratory [40]. Prior work has demonstrated
WOz studies as a viable intermediate step in automated robot devel-
opment, although continued to rely upon human intelligence for
landmarks as part of the robot navigation [3]. We then employed a
mixed-methods analysis to examine the structure of language by
the participants.

We use qualitative linguistic analysis, drawing upon referential
language analysis, to “situate the communication in the current
task and environmental state” [35] and to study the context and ef-
ficacy of instructions. We discuss how the combination of language
elicitation in situ, mixed methods analysis and Machine Learning
could be used by researchers and designers to verify the usefulness
of data to create spoken language understanding for specific low-
resource environments, enabling development of robots that can
be controlled through locally specific natural language.

The primary contributions of this work are (1) the RoboClean
dataset obtained from the Wizard of Oz elicitation study in a labo-
ratory setting1, and (2) insights on the linguistic (e.g., referential)
make-up of instructions for use in future spoken language under-
standing (SLU) for human-robot interaction.

1.1 RoboClean: a case study
We present results from a study in a laboratory setting in which
participants interacted with a ‘robovac’. Robovacs are typically
tasked with cleaning unbounded areas, with users issuing simple
commands to clean (often, but not exclusively through software or
hardware buttons). Typically, the robot has to assess the layout of
the environment, formulate and execute actions to clean it, ideally
without requiring interruption or human intervention.

Robovacs present what we consider to be an interesting case, as
they are widely used in both domestic [14] and specialised envi-
ronments [49]. We focus on the latter setting, which poses various
different challenges and distinctions from domestic settings. The
consequences of misunderstanding a command in these settings
is more serious than in a domestic environment. Operators in spe-
cialised environments have local knowledge such as vernacular
terminology to denote object and areas in the space, and an opera-
tor may wish to prioritise certain areas, enquire about past tasks,
or schedule tasks for the future.

The purpose of the case study is to elicit and examine the lan-
guage that persons with local knowledge use to instruct the robovac
in a number of cleaning scenarios. To do this we conducted a WOz-
based elicitation study in a university food chemistry laboratory.
We recruited people who regularly work in the laboratory and thus
possess (at least some) local knowledge regarding the objects and
areas in the lab. The RoboClean case study thus helps us understand
what kind of approach might work to cater for other specialised
environments with broader robotic instructional needs. We then

1The dataset is available under a CC-BY license at https://doi.org/10.17639/nott.7295

make use of the resulting dataset to examine the language fur-
ther to understand the requirements to develop spoken language
understanding for human-robot interaction.

This paper is structured as follows: section 2 presents research
related to our study, then the approach is introduced in section 3,
the qualitative analysis and understanding of spoken instructions
are described in section 4, the discussion and design implications
are in section 5, and we offer our conclusion in section 6.

2 BACKGROUND
In food factories, cleaning floors is still largely completed by human
workers and offers an opportunity to explore human-robot collabo-
ration to assist in this food safety-critical activity. Cleaning ‘co-bot’
teams have been proposed as a way of integrating robotic cleaning
with on-line sensing of allergens using near-infrared spectroscopy
(e.g. [5, 46]). Robot-vacuum cleaners have been explored in domes-
tic settings revealing the impact on people’s routines, activities,
and roles [12, 13]. We expand this work by investigating what kind
of contextual language understanding might be needed to ensure
effective and situationally appropriate human-robot interaction in
industrial settings.

In this section, we review the literature studying interaction with
robots through natural language, outline the language grounding
problem for specialised, low-resource environments, and relevant
HRI datasets.

2.1 Challenges in natural language interaction
for HRI

To improve how robots can collaborate with people to engage in
complex tasks, one of the key elements is the use of natural lan-
guage to maximise the robot’s verbal and non-verbal understand-
ing [30, 57]. Spoken Dialogue Systems (SDSs) enable interaction by
natural language communication, ranging from simple pre-defined
Q&A dialogues tomore sophisticated interactions by conversational
agents. The main SDSs components involve speech recognition,
language understanding, dialogue management, communication
with external systems, response generation, and speech output [32].
Similar to SDSs, spoken language understanding (SLU), involves
automatic speech recognition, natural language processing, under-
standing, and synthesis [6, 25]. Voice interfaces have followed a
more commercial deployment approach [31], like those present
in smart speakers, acting as voice agents or virtual assistants and
being ever more present in everyday life [41].

From a HRI perspective there is still a limited understanding of
how people respond to robots in complex settings and how social
dynamics are affected [21]. In terms of deployments of collabora-
tive robots (co-bots) in industrial contexts, Sauppé and Mutlu [51]
conclude that co-bots should be designed with basic language capa-
bilities that would allow them to communicate with their human
counterparts whenever they malfunction. In contexts, such as tour-
guide robots, identifying patterns of pronouns and nouns resulting
in accurate responses to visitors’ enquiries were identified as impor-
tant [22]. Both of these studies suggest that the language capabilities
and communication patterns of the robot are essential to the design
of new interfaces.

https://doi.org/10.17639/nott.7295
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For the design of robotic assistants for hospitals, in which robots
are responsible for the completion of simple tasks such as interact-
ingwith staff and the delivery ofmessages andmedicines, SDSs offer
a state-based approach for supporting dialogues by pre-defining
dialogue into structures and series of states. This means that whilst
the users’ inputs are more easily predicted by the robot, the flexi-
bility of the dialogue is considerably limited. The dialogue of the
robot is therefore designed to consist of short exchanges, with
the main focus being ensuring correct interpretation of the users’
inputs. Various observations were made regarding the prospect
of mobile robots with natural language interfaces, including that
given the multiple subsystems such robots contain (e.g., navigation),
SDSs with a state-based dialogue are a viable approach given the
relatively fast language processing possible [54].

Tellex et al. [57] evaluate the performance and precision of a
model capable of understanding natural language commands from
untrained users for instructing an autonomous forklift and sug-
gest a probabilistic model to structure spatial description clauses.
However, the latest investigations in this area suggest the need
for in-depth contextual understanding to allow utterances to be
more effectively understood within specific contexts [29, 56]. Thus,
examining robots in different contexts, across different groups, and
different types of workplaces, is critical to expanding the required
knowledge for fluid human-robot communication, including more
effective interactions and task performance [21, 29, 30].

2.2 Natural language grounding in low-resource
environments

Natural language present a rich set of challenges for HRI and AI:
referential expression resolution, multimodality, the dynamism
of language, ambiguities and automatic generation of referring
expressions, the seemingly imprecise nature of utterances and ‘un-
structured’ ways for describing objects, situations or directions [10,
15, 17, 23, 30, 50, 55, 57, 60]. These challenges stem from applying
computational formalisms to language, rather than the other way
around. When humans communicate or collaborate with others
they can use different levels of internal and external strategies to
deal with language challenges, but for making robots capable of
appropriate responses to human requests it is necessary to embed
tools, strategies, and data for knowledge that improves the machine
reasoning process [50].

Adaptable and situated robots that can understand human prac-
ticeswhen interacting via speech are critical for successful language-
based human-robot interactions [56]. While we acknowledge that
Automatic Speech Recognition (ASR) is necessary to recognise what
the human is saying (i.e., machine transcription) [1, 45], our work
takes this aspect of the SLU pipeline as a given. Once human speech
has been transcribed, in order for the robot to understand what the
human may have meant, semantic recognition through natural lan-
guage processing is required. This is linked to the language ground-
ing problem (related to the symbol grounding problem) [19, 56].

The language/symbol grounding problem, sometimes known as
“grounded language understanding” [19, 56] has been extensively
studied within robotics. It centres on the grounding of semantic rep-
resentations (e.g., as a result of language processing) in the physical
percepts (e.g., as a result of image processing) and physical actions

(e.g., as a result of motion plan formulation) to achieve grounded
language acquisition. Grounding relies either on lexical approaches
that formalise the relationship between semantic and physical rep-
resentations or learning language models from large datasets [56].
However, the grounding for specific environments is unlikely to be
able to rely on existing generalised datasets due to the specialised
local terminology and objects in the space. Specific large training
datasets will be costly to generate. Hence, it is necessary to develop
models capable of operating under data-constrained environments
better known as Low-Resource Environments (LRE) [33, 62]. LREs
relate to constrained scenarios where it is difficult to collect large
volumes of data needed to train models. Some examples of low-
resource environments are specialised technical contexts and their
specific languages, conversational robots interacting with older
adults with dementia or people with speech impediments [33, 43].
To situate robots that successfully process natural language in these
specialised, low-resource scenarios, it will be critical to generate
datasets that contain locally specific language so that robots can
improve their natural language grounding capabilities.

To our knowledge, there are a few datasets in HRI from low-
resource environments, and more are needed to be tested with
different algorithms [34] including reusable datasets from small
domains [29]. Some types of large datasets have also been found to
be not not applicable in low-resource environments [44]. A survey
presented in 2020 listed the most common datasets used in language
grounding and robots, highlighting the conflict between the data
domain and the current robotic task [56]. Moreover, matching these
rich datasets and the contextual environment where the robot will
operate would be challenging [56].

In this work, we collect our own corpus of data to study partici-
pants’ natural/unstructured instructions in the context of delegating
cleaning tasks to a robot vacuum cleaner. Following, we present
our approach to generate a contextualised dataset that contains par-
ticular linguistic structures for language grounding in low-resource
environments.

3 APPROACH
Our approach consists of an elicitation study followed by linguistic
analysis. Similar approaches have been tried previously to develop
natural language interfaces (e.g., [24]). As such, we conducted quali-
tative analysis of the spoken instructions (linguistic analysis), which
may be used to inform further work using Machine Learning tech-
niques to develop models based on the language practices identified
from in situ interactions.

3.1 Data collection and curation
We designed an elicitation study to examine and understand the
situated nature in which instructions are made in a ‘low-resource’
environment in a similar approach to Bonial et al. [3]. As discussed
above, we opted to use a robotic vacuum cleaner in a university
food chemistry laboratory. We chose this for its specialised indus-
trial nature with the laboratory equipment present, which with
its concomitant specialised terminology represents a low-resource
environment for spoken reference resolution. This setting also has
greater accessibility for us to conduct safe studies in comparison to
an always-active industrial environment. Likewise, such vacuums
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are a readily available commercial technology that could be pur-
posed for our needs with relative ease. We hasten to add that we do
not proffer the data though this elicitation study as applicable to all
similar settings but rather as a singular case study. Thus, we seek
to contribute a generalisable approach that can be applied in other
low-resource environments rather than a single bespoke dataset.

We now introduce the design of our study and the curated sce-
narios we asked participants to complete, the details of the Wizard
of Oz methodology, and our analytic approach. Our study was
approved by the School of Computer Science Research Ethics Com-
mittee and each participant completed an informed consent process
prior to the commencement of the study. Each participant received
a £20 gift voucher for their time.

3.1.1 Study design. To explore how people issue commands to the
robot we recruited 21 participants to complete a research study
in the laboratory. Participants instructed the robot to clean areas
of the laboratory floor. Figure 1 shows the starting position of
robots within the room (R1 and R2) as well as existing objects in
the space (tanks, tables, and a bleed-gauge, labelled as O1–O6). We
defined three arbitrary areas (A1, A2, and A3) in the laboratory
and participants were asked to send robot to clean any of these.
Neither the objects nor the areas were given specific a priori names,
rather our intention was to collect participants’ natural descriptions
(references) of these, from which we could develop our protocol.
As the intention of the protocol was to enable rapid deployments
of existing technologies to low-resource settings, these predefined
areas act as constraints, built upon assumptions aboutwhat practices
might be needed. Participants’ response to these assumptions will
in turn shape our understanding of needs of the technology for
these settings. This stands in comparison to elicitation studies that
are more exploratory in nature, focusing on informing the design
of a technology rather than rapid deployments [20].

We use a Wizard of Oz (WOz) approach [11, 40, 48, 53] rather
than implementing the ‘intelligence’ of the robot’s spoken lan-
guage understanding and control ourselves. In this approach, a
second researcher (theWizard) controlled the robot’s movements
and audible response without the participant’s prior knowledge.
TheWizard sat at the table to the left of the laboratory (see Figure 1)
and was introduced to participants simply as another researcher
observing the study—they never interacted with the participants
and the Wizard-controlled nature of the robots were not explained
to participants until after the study. We made use of two Neato D7
Robot Vacuum Cleaners [36, 58] as our robots, controllable using
the Neato mobile app installed on an iPad. Although participants
were only ever ‘controlling’ one robot at a time (the other was a hot
spare). Once the robot vacuum cleaner started to clean, it worked
autonomously within the zone to be cleaned, but would not detect
debris on the floor, instead following the internal programme for
cleaning.

We used existing software for running voice-based Wizard of
Oz studies [42]. The software allows for the partial pre-scripting
of responses and is designed to reduce the amount of typing re-
quired in generating responses. The system also logs data, such
as timestamps and messages spoken to support later analysis. For
this study, the software piped the typed output to the macOS voice
subsystem—specifically using the voice ‘Daniel’ (a British English

Figure 1: Chemistry laboratory floor schematic

male voice). The computer running the software was connected via
Bluetooth to a portable battery-powered speaker attached to the
top of the robot. This furthers the simulation of the user interacting
with the robot.

The robot’s positioning system, branded ‘360 LaserSmart Map-
ping’ [37], creates maps of the environment bounded by walls and
obstacles however it is not possible to control the navigation system
or even access the current position of the robot using presently
available APIs. Due to this, the Wizard was constrained by the pos-
sible range of responses. The app provided the location of the robot
when it was in its base station. The Wizard controlled the robot
according to the app’s functions, which were ‘start cleaning every-
thing’, ‘clean a pre-programmed zone’, ‘pause’, ‘stop’, and ‘return
to base’. In other words, the Wizard could not choose to manually
control the robot and the Wizard’s actions were constrained to
ensure that their “human intelligence [did not] stray too far beyond
the performance of the future system” [16]

The study took place over ten days, with each study taking 20–30
minutes. The setting was not ‘staged’, with equipment positioned
as and where we found it, although we ensured this was consistent
throughout all studies. Each study was video and audio recorded
with two wide-angle cameras on tripod, including a hand-held
recorder (to allow for higher quality audio capture).

3.1.2 Description of the Wizard’s control. One of the researchers
acted as the Wizard during all the studies and was aware of the
goals of the study to capture the language and interaction used
with the robot. The Wizard did not know the participants prior
to the study. Their role was to operate the voice-based software.
Throughout the study, the Wizard tried to respond to requests from
users as promptly as possible, balancing the act of instructing the
robot to complete the task using the iPad app and generating the
synthesised response.

The wizard’s decision whether to treat a given instruction as
‘successful’ or not (i.e., to trigger the robot’s action desired by the
user) was based on several factors: 1) the ability to perform the
instruction using the app, 2) in requests to clean a specific area, the
ability for the Wizard to precisely understand the request. The lack
of live positioning data meant that requests for cleaning relative to
the robot’s current position and rotation in the environment did
not ‘succeed’ if robot was not in its base station (e.g., ‘clean in front
of you’ is a constantly changing while the robot is moving, but
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Figure 2: Maps of the environment from the Neato platform (in light grey) of: (a) the entire space, and the three areas to clean:
(b) A1, (c) A2, and (d) A3

possible when the robot is in its base in front of a pre-planned area
for cleaning). If the Wizard did not understand a specific location,
an error response including a partial transcription of the location
given by the participant would be generated (e.g., ‘Sorry, I don’t
understand where by the window is’ if the participant asked to clean
by the window). If the participant did not provide a specific location,
a request for one would be given (e.g., ‘Where should I clean?’).

The Wizard made notes using a piece of paper when a decision
was made to respond to a request in a given way, to ensure consis-
tency across the studies and reduce ‘Wizarding errors’. As per the
intention of the study to elicit the language for instructions, there
was not a strict protocol for the Wizard to follow, rather an outline
of the scenarios and tasks participants were required to complete.
The Wizard responded to requests from participant, recording their
decisions, and iteratively evolving the protocol throughout the
studies, forming a list of rules that would be applied to subsequent
requests [40]. For example, the Wizard accepted requests that did
not start with the command ‘robovac’ despite this being initially
planned, and as a result, this change in practice became part of the
protocol.

3.1.3 Participants. 21 participants volunteered for the study, 11
self-identifying males and 10 self-identifying females (see Table 1).
Participants were contacted through written notices and e-mails
within the university’s Faculty of Engineering. We recruited stu-
dents and staff who work in the laboratory at least periodically thus
would have familiarity with the environment and equipment found
there. After agreeing to taking part in the study, participants com-
pleted a demographic questionnaire and answered questions about
their cleaning practices and routines in relation to the laboratory
facilities.

3.1.4 Procedure. We conducted preliminary interviews and issued
a questionnaire to understand participants’ prior experience with
robots and voice interfaces. Participants then proceeded to interact
with the robot through five different pre-developed scenarios that
we envisage might come up in such an environment. Participants
were asked to instruct the robot as they wish (although we asked
them to call/refer to it as robovac when issuing instructions). We
specifically instructed participants that “there was not a correct
or wrong way to do it”. As explained above, when the participant
gave an instruction to the robot that provided enough information
for the Wizard to interpret which area to clean, the robot was

Table 1: Approximate age, self-identified gender, and occupa-
tion of participants

# Age Gender Occupation

P1 25–29 M Researcher and Technician
P2 50+ F Learning Tech. Consultant
P3 35–39 M Learning Tech. Consultant
P4 50+ F Learning Tech. Consultant
P5 35–39 F Chemical and Env. Engineer
P6 50+ F Laboratory Technician
P7 25–29 F Laboratory Technician
P8 30–34 F Laboratory Technician
P9 30–34 M Laboratory Technician
P10 25–29 F Student
P11 20–24 M Student
P12 25–29 M Building Attendant
P13 35–39 M Building Attendant
P14 45–49 M Laboratory Technician
P15 30–34 F Student
P16 25–29 M Research
P17 25–29 M Student
P18 45–49 M Administrator
P19 30–34 F Student
P20 25–29 F Student
P21 25–29 M Student

commanded by the Wizard to clean the area using the iPad app (see
above). After interacting with robot, we conducted an exit interview
to understand participants’ reflections of their interactions with
robot.

3.1.5 Scenarios. Participation was structured and managed in ac-
cord with various prepared scenarios. To begin with we will detail
a simple example of the basic clean scenario, and then describe the
other remaining types (status, interrupt, queuing and schedule).

Clean The participant is asked to choose one of the three ‘piles’
of debris available and instruct the robot in a ‘natural way’
to clean one of those areas. The following vignette provides
an example of the kind of dialogue that would unfold.
Vignette. P1 works on research and as a Teaching Tech-
nician in the chemistry laboratory (male, 25–29 years
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old). They do not own any smart technology at home
and their only experience interacting with technology
through voice is using an Amazon Alexa. They do not
have experience using robots in the workplace. When
the researcher asks them to instruct the robot to clean
any area in the lab, the following dialogue unfolded.
P1: robovac can you clean the floor over here please?
Robot: sorry, I don’t understand where over here is
P1: robovac clean near the table
Robot: ok, I will clean near the table now

Status The participant is asked to request the status of the
robovac while it is cleaning (e.g., to find out what the robot
is doing, or how long the cleaning task will take).

Interrupt The participant is asked to interrupt the current task
of the robot and send it to do another activity (or to return
to its starting position).

Queuing The participant is asked to instruct the robovac to
do another cleaning task after it has completed the current
one (this was introduced to participants as ‘queuing up’ of
tasks).

Schedule The participant is asked to instruct the robovac to
clean areas of the laboratory at a future time e.g., after fin-
ishing their (i.e., the researcher’s) session in the laboratory,
or after everyone has left.

3.2 RoboClean dataset description
The data collected from the 21 participants’ trials are represented
in a single table consisting of the following parameters:

• scenario is a numerical index for the scenario the participant
is completing and can be any of the integers 1–5, correspond-
ing to the Clean, Status, Interrupt, Queuing, and Schedule
respectively (see above)

• input message is the transcriptions of each participants’
instructions to robovac

• input time provides a chronological order of each instruc-
tion

• output message is the Wizard’s ‘response’ to each instruc-
tion

• performance includes the categorisation of successful and
unsuccessful instructions followed by the robot (see subsub-
section 3.1.2)

• reference and parameter correspond to the final categori-
sation of participants’ spoken instructions (see section 4)

• embodied actions describe all the participants’ body move-
ments, labeled following Giuliani et al.’s categories [18]; the
dataset includes head and body movements, posture, facial
expressions, speech, hand gestures, and emotions

The RoboClean dataset is available under a CC-BY license at https:
//doi.org/10.17639/nott.7295.

4 UNDERSTANDING SPOKEN INSTRUCTIONS:
LINGUISTIC ANALYSIS

This section describes the qualitative linguistic analysis we con-
ducted to identify the categories of instructions and referential
parameters that lead to inform the creation of an automated classi-
fication process using Machine Learning.

The audio recorded from the robot interactions was transcribed,
segmented by scenarios and participants. We collected 525 instruc-
tions to the robot and classified the embodied actions from those
inputs, based on the video categorisation for social signal suggested
by Giuliani et al. [18]. In this, we identified the head movement,
body movement/body posture, facial expressions, hand gestures,
and speech associated with each participant input. In this paper,
we focus on the use of speech only, leaving the other forms of
multi-modal interaction as out of scope. Additionally, following a
thematic analysis approach [2, 8], two researchers classified how
the participants’ requests could be parsed by algorithm to determine
the desired location the participant wanted cleaning, examining
the referential categories used. In other words, our goal was to
categorise how the participant specified the location of the position
to clean. For this process, both researchers independently classified
each request to zero or more positional references. After that, dis-
crepancies were reviewed and agreement sought. Below we detail
the classification of these 525 inputs into four referential categories.
Following the referential categories, one researcher grouped data
into 5 different parameters related to the scope of each referential
category.

4.1 Spoken instructions in context
Here we present results from our analysis of participants’ spoken
instructions in situ. In general, the grammatical logic of an instruc-
tion in the English language follows the pattern Address + Action
+ Parameter. The Address term (e.g., “robovac”, or “vacuum robot”)
(which may be omitted), the Action term corresponds to the predi-
cate (verb) (sometimes formulated as a question), and the parameter
corresponds to the object of the instruction. To understand what
kind of instructions a voice-based natural language interface would
need to support in future, in what follows we focus on how people
construct the object / parameter part of the instruction.

4.1.1 Referential categorisation of instructions. As instructions are
constructed in a situated manner in reference to the setting and
tasks, it matters to examine them in relation to how the instructions
were constructed by participants. Our thematic analysis yielded
five top-level referential categories:

• Space: relative to the environment in some way e.g “robovac
clean this whole area”, “robovac clean the table area and the
camera area”

• Operator: relative to the person giving the commands e.g
“robovac come and clean next to where I am”

• Base: relative to the base e.g “robovac can you go home”
• Robot: using the robot’s current positioning to go some-
where, rather than the robot being told to go to something
based on a point in the environment e.g “robovac stop what
you’re doing and clean directly behind you”

• Other: no positioning, uncertain information. e.g “robovac
start”, “robovac what time is it now?”

Most of the instructions were constructed relative to the robot
itself (32.38%) and the space (21.90%). It was less common that in-
structions were constructed relative to the operator themselves
(1.71%) and the base (2.10%). The category “other” captures the re-
maining 35.62% of instructions and it includes instructions related

https://doi.org/10.17639/nott.7295
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to questions to the robot, greetings and verbs without any addi-
tional information of the environment. Additionally, there were
combinations of the main categories, e.g., robot-operator, robot-
space, space-robot and so on, which in total corresponds to 6.29%
of categories.

4.1.2 Parameter construction. Based on further thematic analysis
of participants’ instructions, we examined in more detail the gram-
matical objects used in the referential instructions to “parameterise”
the instruction, inspired by Wobbrock et al. [61]’s gesture taxon-
omy. Table 2 shows the parameters and frequencies distributed by
scenarios. We included just the four main referential categories
(305 instructions) excluding the category “other” (187 instructions)
and combination of “space: operator, robot, base”, “robot: opera-
tor, space, base” and “operator: robot, space” (36 instructions in
total). We excluded from the analysis the instructions categorized
as “other” because these instructions did not contain referential
information. Some examples of the category other were for example
robovac start; robovac can you clean for me?; robovac next; stop; robo-
vac how dirty is it?. Most of the instructions in the category “other”
were related to the “Status” scenario, reflecting that this scenario
was generating bidirectional communication or encouraging a sort
of dialogue with the robot instead of human-to-robot unidirectional
instructions.

Table 2 shows that object-centric instructions are mostly related
to the space rather than robot. This reflects that when the instruc-
tion is constructed in reference to the robot’s current position it
does not contain more details about the elements in the environ-
ment. We identified a difference as well between object-centric and
room-centric, with participants delegating cleaning tasks using as
references particular objects inside the room that define an area to
be cleaned (e.g., clean by the water bath, clean under the tank, clean
next to the bin), but without specifying how much surface should be
covered. In contrast, room-centric comprises typically more coarse-
grained instructions for cleaning larger areas e.g., clean the whole
lab, clean the whole room, clean everywhere.

Table 2: Contextual parameters of instructions for each sce-
nario and in total

Reference Parameter S1 S2 S3 S4 S5
∑

Robot Direction 52 15 55 34 1 157
Distance, Direction 1 2 2 5
Distance 1 3 4
Direction, Time 1 2 3
Direction, Room-Centric 1 1

Space Object-Centric 7 6 16 14 6 49
Room-Centric 4 2 5 5 21 37
Room-Centric, Time 1 18 19
Object-Centric, Time 1 6 7
Direction, Time 1 1
Room-Centric, Object-Centric 1 1
Object-Centric, Distance, Direction 1 1

Operator Direction 3 1 2 1 7
Distance 1 1
Direction, Time 1 1

Base Direction 1 9 1 11

Figure 3 presents the most common instruction types that emerge
from the data with examples for each one. We obtain instruction

types when we combine reference and parameter, i.e., Table 2 lists
16 types. The most frequent instruction type was Robot-Direction
(157/170), which was typically found in the “Clean” and “Interrupt”
scenarios.

For instructions constructed in reference to Space, the most fre-
quent parameter was object-centric to reference nearby objects, e.g.,
by tanks, by the pipes, behind this desk, near to the window.

5 DISCUSSION AND DESIGN IMPLICATIONS
Following the collection of participants’ instructions to robots
through our five scenarios, we identified the core linguistic elements
of instructions to the robot. We then categorised the different ways
in which people formulated these instructions in situ, by drawing
out the different referential categories and various contextual pa-
rameters participants used in our study. This contextual information
is a key source of data, providing the robot with additional informa-
tion to ‘understanding’ both the environment and the instructions
given to it by operators, to improve information exchange [39]
and effective communication [29, 57]. This serves to support richer
dialogues that may contribute to more fluent natural language inter-
actions [9] and maximising verbal understanding [30, 57], specially
in constrained environments when training data might be limited
for language-based human-robot interactions [38, 56].

In our work, we found the terminology people tended to use in
the instructions was (of course) constructed in a contextual manner
that took the present situation into account. More specifically than
this, we identified a way to break down this contextualisation into
something much more tractable for adoption in the development of
natural language interfaces for robots in specialised environments.
To this end we offer a grounded schema for dealing with referen-
tial categories, in particular the following ways of cutting up the
space of language: references to the environment, references to the
position of the robot, its base, and the operator themselves.

We now elaborate on these in terms of their robot-centricity,
object-centricity and room-centricity.

5.1 Robot-centric instructions
For navigating the world, mobile robots commonly use referring
information [57], establishing a link between robot’s information
position and what is included in the referential language of the
instruction in addition to internal planning and navigation algo-
rithms. Robot-centric instructions focused on direction and distance
but seemed to take for granted the robot’s location. In our data,
the utterances related to robot position represent 32.38% of the
instructions, and of that, more than 90% includes direction as a
contextual parameter. The instructions reflect that having robot-
centric spoken instructions will require a robot to know and use its
location. Hence, the starting point for any robot-centric instruction
will rely on robot understanding of spatial relationships (position).
For example, the instruction “robovac can you clean five feet to your
right” builds on the assumption of environmental understanding
and previous knowledge of where the robot is physically located in
space. The robot should recognise their front, back, left, right, up
and down before combining it with any additional source of data
that complements their own “robot self positional awareness” to
act. The spatial language identification at this level of detail would
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Figure 3: Most common instruction types: combinations of referential categories with contextual parameters

contribute to improving the robot communicative understanding
process [29], providing mechanisms to identify the instructions re-
ceived and to prioritise its position to then combine with contextual
parameters.

5.2 Object-centric instructions
The contextual information related to the environment was mainly
expressed in terms of objects and areas within the room. 21.9% of the
instructions were related to the space, of which 42.6% correspond
to “object-centric” instructions. For example, the space-object type
instruction “robovac can you clean by the grey frame over there
please” articulates a target area in which to clean by drawing on an
environmental reference in terms of an object (the grey frame). The
participants’ local knowledge especially came to the fore regarding
the object descriptions. This contextual information is crucial to
be available to process contextually-relevant terms about objects
within a given space, many of which have multiple identifiers such
as variants of product names and types. In our experiment—in
the chemistry laboratory—examples of such objects include “bleed
gauge”, “valve board”, “grey tanks”, “water baths”, and “the rig”. This
kind of variable local knowledge and terminology used to reference
objects in the present environment will need to be present in future
systems so as to support greater immediate familiarity with robotics.
This implies the need for SLU to be configurable with the contextual

terminology about objects that are part of those spaces, their names
and ways of referencing them that are reflective of local working
cultures and practices: e.g., “grey tanks”, “water baths” and “tank”
are ‘the same’ for our setting.

5.3 Room-centric instructions
In contrast with the previous two types, for room-centric instruc-
tion types (32.17% of instructions related to space), participants
made use of common terminology to refer to specific areas of the
laboratory. For example, “robovac clean the whole room” delineates
areas of the surface to clean by using terms such as “whole”, “all”,
“everywhere”, and “half of the lab”. This raises particular challenges;
while people who use such spaces understand which area of the
room is considered “half of the lab”, where this “half” starts and
where it ends poses a difficult challenge to disambiguate and do so
appropriately for the given situation.

The referential categories most used by participants included
direction, distance, and time e.g., “clean right” or “turn 180 degrees”,
and so on. In the case of distance, users’ instructions typically
included a particular point to go to, e.g., “travel one metre and 10
metres diagonally”. This reinforces the challenge in implementing
a system that can handle specifics where given but also where they
are omitted.
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5.4 Challenges for contextual understanding in
low-resource environments

There are several significant challenges to overcome to provide a
rich source of knowledge that helps to bridge the gap from “voice
to action” for the effective instruction of robots [29, 50]. In our case
study, one of the challenges that emerges is how to address the
contextual information in specialised low-resource environments.

To advance HRI from more simple pre-defined commands to
dynamic/flexible interactions, it is critical also to understand the
context of the interactions [56], such as where does the language
of required actions come from and how does it relate to the situ-
ated robot [30, 38, 50, 57]. As Mavridis [30] highlights, it is vital to
integrate “language with sensing, action, and purpose in conversa-
tional robots”. However, to achieve this it is necessary to connect
the language with the physical context, known as “situated lan-
guage”. Such situated SLU would need to be built in a systematic,
situationally-specific way, thus providing a starting point for mak-
ers of, for instance, future situated language models in other kinds
of specific environments. We offer some preliminary thoughts how
this might be achieved in the following.

5.5 Automating situated language
understanding

Finally, we reflect on future work needed to extend our work to-
wards situated SLU for interacting with voice-controlled robots.

Providing a common ground of understanding is critical for
improving the interaction between humans and robots [30, 50, 57].
In our study, we were able to identify the referential categories and
parameters of spoken instructions.

The next steps would include separating the instructions into
multi-label and binary problems to evaluate the feasibility of au-
tomatic labelling based on performance on different models. This
learning process enables the generation of a metric to evaluate the
linguistic model, allowing the protocol to be iterated until a desired
learning accuracy threshold is reached. Following this, integration
in the speech-based interactive design of a robot can be completed.

In this paper we have outlined the first steps of what might
be termed a ‘protocol’ for natural language grounding and sug-
gest that this protocol could be applied in different specialised
environments beyond the specific setting we investigated. The
various stages of this protocol would enable the generation and
modelling of situationally-relevant language for a range of different
service robots in diverse specialised environments—although we
must caveat this to say that future work is needed to determine the
precise contours of how generalisable this protocol actually is.

First, we want outline what the key stages of this protocol might
be, in order to provide a clear ‘toolkit’ for others:

(1) Task-Setting. Defining the task(s) to be performed by the
robot(s). Through the definition of these tasks, situational
aspects also begin to be crafted, e.g., that tasks A, B, and C
are usually undertaken in the particular setting.

(2) Bootstrapping. For situations in which there is no extant
situationally-specific language data for the given setting, we
recommend a bootstrapping process, consisting of:

Elicitation. Gathering the language employed in situationally-
specific tasks through the design and orchestration of sim-
ple scenarios where potential operators who possess local
knowledge—such as specific terminology for the objects and
spaces in the setting—provide spoken instructions to the
robot, such as through a Wizard of Oz (WOz) study similar
to the one we demonstrated in our paper.
Data Augmentation. To make the reasonably sparse

dataset thus collected more robust for modelling, carry out a
data augmentation process. Augmenting our dataset through
permutation of words allows our classifier to be less sensitive
to those variations in language.

(3) Linguistic analysis. Carry out a linguistic analysis to un-
derstand the grammatical composition, terminology, and
potential categories in the elicited natural language instruc-
tions. The outputs of this serve as labels for the modelling
step.

(4) Modelling. Generating Machine Learning models where
metrics can serve to evaluate the potential applicability of
the model in the setting. Repeat steps (1)-(3) until the desired
level of accuracy has been achieved.

One of the advantages of the protocol may be to apply it where
data collection can be logistically challenging, e.g., because of cost
or time constraints, non English-centric environments, as well as ne-
cessitating setting-specific vocabulary. In particular, this approach
to generating Machine Learning models for low-resource environ-
ments could be accurate with a relatively small quantity of data
(as opposed to the relatively ‘big’ datasets normally required to
generate such models).

5.6 Limitations and Future Work
Our study does have some limitations. First, this is a partial contri-
bution to the grounded learning problem, our study focuses only
on the semantic representation of instructions, without including
objects or image representation and recognition. Second, there are
remaining challenges that we did not explore such as integrating
ambiguity and unstructured sentences of the instructions within
the grounded schema for specialised low-resource environment.
Third, the methodology used in this study is not new; however,
applying a qualitative approach to elicitate specific terminology
makes it possible to contribute a contextualised dataset for HRI
in data-constrained environments (low-resource contexts). Finally,
future work can include different data constrained contexts, allow-
ing WOz removal, and recognising patterns of successful spoken
instructions without a Wizard, focusing on details of successful
instructions such as speech tone, speed and intonation.

6 CONCLUSION
As robots controlled through voice are becoming more pervasive it
is important to understand how to design for situationally-appropriate
spoken language understanding in all kinds of environments. This
work sought to provide an understanding of situational language
use in robot instructions in a specialised environment; and we
discuss how the resulting dataset could be used to contribute to
automate situated language understanding.
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Our work in this paper contributes a grounded language dataset
in a low-resource environment. HRI designers and researchers can
use this dataset as a starting point to build on and refine to create
their own situated natural language interfaces that are bespoke to
any specific environment, by example of the RoboClean case study
involving instructions of a robot. Through a WOz study we elicited
the specialised language in situ through which participants with
local expert knowledge, such as terminology for what objects and
areas in the space are called, instructed a voice-controlled robot.
We suggest that this approach is, in principle, applicable in other
specialised environments and should enable those wishing to build
natural language robot interaction for those environments.

Our qualitative analysis of more than 500 spoken instructions
of the grammar of instructions (address, action and parameter)
suggests that it is important that specific local terminology can be
understood for instructions to be successful, supporting the case
for future work in this area. We then discuss a number of additional
tasks that would be needed to explore whether and how spoken
language understanding of instructions in specialised environments
could be automated, which would need to be validated in future
work, particularly with non-WOz voice-controlled robots.
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